

Introduction

- M Explain the meaning of and provide examples of Data types
- Explain how bits can be combined to create complex codes
- Introduce the concept of Boolean operators
- Differentiate between a digital signal, machine language, assembly languages and high level languages.

 \bigcirc

\$\$

Learning Outcomes

6.2. Understanding computer binary operations and introduces terms Data type, Machine Code, Assembly Language. Identifies the relationship between and use of common character sets.

- At the completion of the session, students will be able to;
- 1. Explain the meaning of the term data type and provide examples
 2. Describe the representation of a Bit in various forms
- 3. Identify basic Boolean (logical) operators AND, OR, NOT, XOR
- 4. Explain the use of binary codes to represent characters
- 5. Explain the term 'character set'
- 6. Describe with examples (for example ASCII and Unicode) the relationship between the number of bits per character in a character set and the number of characters which can be represented

Colunded by the Enamus+ Programme of the European Union

Recalling

How is data represented in a computer or digital system?

- BITS.
- **■** 1 0
- 🛤 On- Off
- True-False
- 5volts 0 volts.

Each bit can be grouped' and combined to make codes.

Co-funded by the Ensemant Programme of the European Union

Data Types

- A data type, in computer science and programming, is a classification that specifies which type of value a variable has and what type of mathematical, relational or logical operations can be applied to it without causing an error.
- The data type defines which operations can safely be performed to create, transform and use the variable in another computation.
- Question what data type did we identify in Lesson 6.1?

Surfunded by the use Programme Control of Co

Boolean Representing logical values TRUE, FALSE Character Encoding text numerically 97 (in ASCII, 97 is a lower ca String Alphanumeric characters m.v Jolly Sallor, GBTT, MMSI Integer Whole numbers have numeric 7, 12, 999	
Character Encoding text numerically 97 (in ASCII, 97 is a lower ca String Alphanumeric characters m.v Jolly Sailor, GBTT, MMSI The digits are treated as text. 235123456 Integer Whole numbers have numeric 7, 12, 999	
itring Alphanumeric characters m.v Jolly Sailor, GBTT, MMSI The digits are treated as text. 235123456 Integer Whole numbers have numeric 7, 12, 999	ase 'a')
Integer Whole numbers have numeric 7, 12, 999 value	31
Float (floating point) Number with a decimal point with 3.15, 9.06, 00.13 numeric value	
Float (floating point) Number with a decimal point with 3.15, 9.06, 00.13 numeric value	

Why data types are important

- A data type is an attribute associated with a piece of data that tells a computer system how to interpret its value.
- Understanding data types ensures that data is collected in the preferred format and the value of each property is as expected.
- For example, knowing the data type for "Jolly Sailor" will help a computer know:
- whether the data is referring to the ship name ("Jolly Sailor") or a list of two names ("Jolly" and "Sailor")
- Munderstanding data types will help you ensure that:
- the data collected is always in the right format ("Jolly Sailor" vs. "Sailor,Jolly")
 the value is as expected ("Joly Sailor" vs. "J011y, \$ai110r")

Co-funded by the Ensemast Programme of the European Union

Coding – Machine Code

- Machine code is a computer programming language comprising hexadecimal or binary instructions which computers are able to respond to directly.
- Machine code is written in a **machine language**. Therefore, a machine, i.e., a computer, can execute it without any translation or conversion.
- The instructions that exist in machine code are known as machine instructions.
- Machine code a numerical language

o-funded by the set Programme

Coding – Assembly Language

- An assembly language is a type of **low-level programming language** that is intended to communicate directly with a computer's hardware.
- Unlike machine code, which consists of binary and hexadecimal characters, assembly languages are designed to be readable by humans.
- Low-level programming languages such as assembly language are a necessary bridge between the underlying hardware of a computer and the higher-level programming languages—such as Python or JavaScript—in which modern software programs are written.

Anded by the

Recap Question

M How are these Data types processed by the computer?

As bits.

Boolean and Logical operators

Switches can be combined to

AND 🛤 OR

NOT

XOR

0

Co-funded by the Ensemas+ Programme of the European Union

■ 1 AND 1 = 1

Described in a TRUTH TABLE

Only when both states are 1, is it true that the Output is '1'

Co-funded by the Enasmus+ Programme of the European Union

OR # 0 OR 0 = 0 # 1 OR 0 = 1 # 0 OR 1 = ? # 1 OR 1 = ?

Co-Anded by the Ensemuse Programme of the European Union

Character Set

Co-funded by the Ensemant Programme of the European Union

- M What is meant by a 'character set'.
- A defined list of characters recognised by the computer hardware and software.
- Each character is represented by a number.
- Which Character Set was introduced in Lesson 6.1 ?

ASCII

- Lesson 6.1. introduced the ASCII character set.
- \blacksquare ASCII American System Code for Information Interchange
- Developed for "Teletype" and "Teleprinters" in 1963
- ASCII Traditionally used 7 bits,
- 00000000 to 11111111
- How many states can be represented?

TASK

Calculate the maximum number of characters that can be represented using 7 bits.

ted by the hogenities

\$\$

2ⁿ

- Each Bit can only have one of two states hence the term Binary.
- 20 = 1 state
- 2⁷ = 128 states
- So 7 bits can represent 128 different codes
- 🛯 7 bit ASCII
- The original ASCII character code, which provides 128 different characters, numbered 0 to 127. ASCII and 7-bit ASCII are synonymous.

Colunded by the Enamus+ Programme of the European Union

ASCIL 7 bit Code	-									_				
AJUII / DIL LOQE	Dec	Hex	Name	Char	Ctrl-char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Cha
	0	0	Null Start of booding	NUL	CTRL-0	32	20	space	64	40	0	96	60	
	1	2	Start of feet	STX	CTRL-A	34	22	÷	66	42	8	97	62	a h
What is the	3	3	End of text	ETX	CTRL-C	35	23		67	43	č	00	63	č
	4	4	End of smit	EOT	CTRL-D	36	24	\$	68	44	Ď	100	64	d
DECIMAL CODING	5	5	Enquiry	ENQ	CTRL-E	37	25	%	69	45	8	101	65	0
DEGINI, LE CODINO	6	6	Acknowledge	ACK	CTRL-F	38	26	8.	70	46	F	102	66	f
	7	7	Bell	BEL	CTRL-G	39	27	÷	71	47	G	103	67	9
FUR ASULL ?	8	8	8 ackspace	85	CTRL-H	40	28	(72	48	н	104	68	h
	9	9	Horizontal tab	HT	CTRL-I	41	29)	73	-49	1	105	69	1
	10	0A	Line feed	LF	CTRL-J	42	2A		74	4A	3	106	6A	1
	11	08	Verocar cab	1 1	CTRL-K	23	20	+	10	10	<u>.</u>	107	00	ĸ
	12	00	Carriage feed	CP .	CTRL-L	45	20	1	77	40	M	108	60	m
CE 00 CT 70 70	14	0E	Shift out	sõ	CTRL-N	46	26		78	46	N	110	66	n
00,00,07,70,70	15	OF	Shift in	SI	CTRL-O	47	2F	7	79	4	ö	111	6F	ö
	16	10	Data line escape	DLE	CTRL-P	48	30	0	80	50	P	112	70	p
	17	11	Device control 1	DC1	CTRL-Q	49	31	1	81	51	Q	113	71	q
	18	12	Device control 2	DC2	CTRL-R	50	32	2	82	52	R	114	72	r
	19	13	Device control 3	DC3	CTRL-S	51	33	3	83	53	s	115	73	s
	20	14	Device control 4	DC4	CTRL-T	52	34	4	84	54	T	116	74	t
	21	15	Neg acknowledge	NAK	CTRL-U	53	35	5	85	55	v	117	75	u
	22	16	synchronous idle	SIN	CTRL-V	54	36	0	86	56	v	118	76	¥
	23	10	Crossed	CAN	CTRL V	64	3/	6	00	50		119	<u>~</u>	**
	29	10	End of madum	EM	CTRL-X	100	20	å	00	50	0	121	70	0
	26	14	Substitute	SUB	CTRL-Z	58	34	÷	90	54	ż	122	74	-
	27	18	Escape	ESC	CTRL-f	59	38	1	91	58	ĩ	123	7B	(
	28	1C	File separator	FS	CTRL-\	60	3C	<	92	SC	í.	124	7C	î.
	29	1D	Group separator	GS	CTRL-]	61	30	-	93	50	1	125	7D	>
	30	16	Record separator	RS	CTRL-^	62	3E	>	94	SE	^	126	7E	~
	31	1F	Unit separator	US	CTRL	63	3F	?	95	SF	-	127	7F	DEL
													Confund	Ned by I
												Ener	nas+ Pr	tgain

Typical shipboard example

- Ships NAVTEX
- Navigational TelexBased on the original Teleprinter designs
- Receives Navigational Safety and weather information.

 \odot

8 Bit ASCII

- ASCII was originally developed for basic computers and printers such as the NAVTEX
- As more computers began to work with 8-bit groups of data, ASCII was written as 8 bits.
- In NAVTEX for example, some ERROR CHECKING is required.
- The most significant bit is sometimes used as a **parity bit** to perform a parity check (a form of error checking).

Co-funded by the Ensimus+ Programme of the European Union

ASCII – 8 bits

■ 2⁸ = 256 states

Required

\$\$

Co-funded by the Ensemblet Phogramme of the European Union

Hexadecimal Representation

What are the alternative HEX Codes for the Characters

Co-funded by the Enormal+ Programme of the European Union

UNICODE

₩ Uses 16 bits ₩ How many codes are available?

M 2¹⁶

STREAT

\$

Co-funded by the Ensamus+ Programme of the European Union

Summary

- M Developed a better understanding of codes
- Considered Logical Functions.
- Used the ASCII Code
- Reviewed number bases of 2, 16 BINARY and HEXADECIMAL
- Introduced UNICODE
- Lesson 6.3 develops an understanding of basic structure of a computer system

Activity

- How many bits are used for the ASCII code?
- How many characters will this number of bits allow for?
- From what was the ASCII code developed?
- What is extended ASCII?
- Why was Unicode developed?

Confunded by the Confunded by the Confunded by the Confunded by the Confunded Barrier Confunded Barrie

Confunded by the Ensemask Programme of the European Union

Self assessment quiz

Note – develop an online interactive quiz or multiple choice selection.
 ■ Example follows

Co-funded by the Ensimus+ Programme of the European Union

\$\$

Suggestive Self Assessment

- (a) Explain the meaning of Data Type
 (b) What data types would represent the values "Fuel Oil", 308.5, "Tonnes", YES or NO
- (c) Describe the primary difference between Machine Code and Assemble Language
- (d) Explain what is meant by a 'character set'.
- (e) ASCII is an acronym. State what words the initial letters represent.
- (f) The first edition of the ASCII code was published in 1963 and it was based on an earlier code.
 - (i) Why was it developed.(ii) Give a marine example of where it is used.

Co-funded by the Ensemask Programme of the European Union

Suggestive Self Assessment

- 🛤 (g)
 - (i) How many bits are used for this original code?
 (ii) How many characters can be encoded using this number of bits?
- (h) Not all of the characters are printable. What are the others called and what are they used for?
- (i) Explain how ASCII is used to represent text in a computer system.
- (j) Unicode is also used to represent text in a computer system.
- **w** (k) Explain the difference between the character sets of Unicode and ASCII.

Co-funded by the Tuble Programme Co-funded by the Co-fund

\$\$